Lecture 11: Attention Layer

Deep Learning for Actuarial Modeling 36th International Summer School SAA University of Lausanne

Ronald Richman, Salvatore Scognamiglio, Mario V. Wüthrich

2025-09-11

- 1. Attention layer
- 2 2. Query, Key and Value
- 3. Attention head
- 4. Multi-head Attention
- 5 5. Other Layers in Transformers

1. Attention layer

Overview

- Attention layers are the key building blocks of Transformers.
 They are designed to identify the most relevant information in the input data.
- The central idea is to learn a weighting scheme that prioritizes the most important parts and their interactions of the input information.
- Different attention mechanisms are available in the literature.
 Our focus is on the most commonly used variant called scaled dot-product attention.

Attention layers were introduced in the seminal paper of Vaswani *et al.* (2017).

Attention layers were first designed for sequential data (e.g., time-series).

The starting point is an input sequence of elements:

$$m{X}_{1:t} = m{\left[m{X}_1, \ \ldots, \ m{X}_t
ight]}^{ op} \in \mathbb{R}^{t \times q},$$

where:

- t is length of the sequence,
- q is dimension of the series,
- $X_u \in \mathbb{R}^q$ is the *u*-th element of the sequence, with $1 \le u \le t$.

- 1. Attention layer
- 2 2. Query, Key and Value
- 3. Attention head
- 4. Multi-head Attention
- 5. Other Layers in Transformers

2. Query, Key and Value

In order to be applied, an attention layer requires the following elements:

- Queries $\boldsymbol{q}_u \in \mathbb{R}^q, \ 1 \leq u \leq t$
 - The query q_u represents what the u-th element is trying to find in the overall input
 - Act like a question asking: "What information is relevant to me?"
- Keys $\mathbf{k}_u \in \mathbb{R}^q$, $1 \le u \le t$.
 - The key \mathbf{k}_u describes what the u-th element can provide to others.
 - Function like a label indicating: "This is the kind of information I carry".
- Values $\mathbf{v}_u \in \mathbb{R}^q$, $1 \le u \le t$
 - ullet The value $oldsymbol{v}_u$ contains the actual content that can be shared
 - When a query matches a key, the corresponding value is passed along as useful context.

The query \boldsymbol{q}_u tries to find a key \boldsymbol{k}_s that gives a match. E.g., in a sentence the query of the subject 'car' tries to find a verb 'accelerate' in the sentence, which then gives a match for a dangerous driving maneuver. In that case, a high attention is paid to the corresponding value \boldsymbol{v}_s .

Queries, keys and values are represented by the three matrices

$$Q = [\boldsymbol{q}_1, \dots, \boldsymbol{q}_t]^{\top} \in \mathbb{R}^{t \times q},$$

$$K = [\boldsymbol{k}_1, \dots, \boldsymbol{k}_t]^{\top} \in \mathbb{R}^{t \times q},$$

$$V = [\boldsymbol{v}_1, \dots, \boldsymbol{v}_t]^{\top} \in \mathbb{R}^{t \times q}.$$

In self-attention models, Q, K, and V are derived from the input sequence $X_{1:t}$ by applying some **time** -**distributed layers**.

2.1 Time-distributed layer

Overview

A time-distributed layer applies the same operation (with the same parameters) to every component (time step) of sequential input data.

- Consider a time-distributed FNN layer with q_1 units applied to the input tensor $\mathbf{X}_{1:t} \in \mathbb{R}^{t \times q}$.
- This performs the mapping

$$egin{aligned} oldsymbol{z}^{ ext{t-FNN}} &: & \mathbb{R}^{t imes q}
ightarrow \mathbb{R}^{t imes q_1}, \ oldsymbol{X}_{1:t} \mapsto oldsymbol{z}^{ ext{t-FNN}}(oldsymbol{X}_{1:t}) = \left(oldsymbol{z}^{ ext{FNN}}(oldsymbol{X}_1), \dots, oldsymbol{z}^{ ext{FNN}}(oldsymbol{X}_t)
ight)^{ op}, \end{aligned}$$

where $\mathbf{z}^{\mathrm{FNN}}: \mathbb{R}^q o \mathbb{R}^{q_1}$ is a FNN layer.

- This transformation leaves the time dimension t unchanged.
- Important, the same parameters (network weights and biases) are shared across all time steps $1 \le u \le t$. This makes the FNN layer a so-called *time-distributed* one.

To derive q_u , k_u , and v_u , three time-distributed q-dimensional FNNs

$$m{z}_{\kappa}^{ ext{t-FNN}}: \mathbb{R}^{t imes q}
ightarrow \mathbb{R}^{t imes q}, \qquad m{X}_{1:t} \mapsto m{z}_{\kappa}^{ ext{t-FNN}}(m{X}_{1:t}),$$

for $\kappa = Q, K, V$, where applied.

These give us the time-slices for fixed time points $1 \le u \le t$

$$\begin{aligned} & \boldsymbol{q}_{u} = \boldsymbol{z}_{Q}^{\mathsf{FNN}}(\boldsymbol{X}_{u}) = \phi_{Q}\left(\boldsymbol{w}_{0}^{(Q)} + W^{(Q)}\boldsymbol{X}_{u}\right) \in \mathbb{R}^{q}, \\ & \boldsymbol{k}_{u} = \boldsymbol{z}_{K}^{\mathsf{FNN}}(\boldsymbol{X}_{u}) = \phi_{K}\left(\boldsymbol{w}_{0}^{(K)} + W^{(K)}\boldsymbol{X}_{u}\right) \in \mathbb{R}^{q}, \\ & \boldsymbol{v}_{u} = \boldsymbol{z}_{V}^{\mathsf{FNN}}(\boldsymbol{X}_{u}) = \phi_{V}\left(\boldsymbol{w}_{0}^{(V)} + W^{(V)}\boldsymbol{X}_{u}\right) \in \mathbb{R}^{q}, \end{aligned}$$

with corresponding network weights, biases, and activation functions.

Equivalently, this reads in matrix notation as

$$Q = \boldsymbol{z}_{Q}^{\text{t-FNN}}(\boldsymbol{X}_{1:t}) = [\boldsymbol{q}_{1}, \dots, \boldsymbol{q}_{t}]^{\top} \in \mathbb{R}^{t \times q},$$

$$K = \boldsymbol{z}_{K}^{\text{t-FNN}}(\boldsymbol{X}_{1:t}) = [\boldsymbol{k}_{1}, \dots, \boldsymbol{k}_{t}]^{\top} \in \mathbb{R}^{t \times q},$$

$$V = \boldsymbol{z}_{V}^{\text{t-FNN}}(\boldsymbol{X}_{1:t}) = [\boldsymbol{v}_{1}, \dots, \boldsymbol{v}_{t}]^{\top} \in \mathbb{R}^{t \times q}.$$

- 1. Attention layer
- 2 2. Query, Key and Value
- 3. Attention head
- 4. Multi-head Attention
- 5 5. Other Layers in Transformers

Attention head

• The attention head is defined by the mapping

$$H: \mathbb{R}^{t \times q} \times \mathbb{R}^{t \times q} \times \mathbb{R}^{t \times q} \to \mathbb{R}^{t \times q}, \qquad (Q, K, V) \mapsto H = H(Q, K, V),$$

with scaled dot-product attention

$$H = A V = \operatorname{softmax} \left(\frac{QK^{\top}}{\sqrt{q}} \right) V \in \mathbb{R}^{t \times q}.$$

• The attention matrix $A \in \mathbb{R}^{t \times t}$ is obtained by applying the softmax function row-wise to matrix $A' = QK^{\top}/\sqrt{q}$, that is,

$$A = \operatorname{softmax}(A'), \qquad ext{where} \quad a_{u,s} = rac{\exp(a'_{u,s})}{\sum_{k=1}^t \exp(a'_{u,k})} \in (0,1).$$

• This ensures that the rows sums of A are equal to one.

Recalling the notation

$$Q = [\boldsymbol{q}_1, \dots, \boldsymbol{q}_t]^{\top} \in \mathbb{R}^{t \times q}$$
 and $K = [\boldsymbol{k}_1, \dots, \boldsymbol{k}_t]^{\top} \in \mathbb{R}^{t \times q}$,

the elements $a'_{u,s}$ of matrix A' are given by the dot-product

$$a'_{u,s} = rac{1}{\sqrt{q}} \, oldsymbol{q}_u^ op oldsymbol{k}_s = rac{1}{\sqrt{q}} \, \left< oldsymbol{q}_u, oldsymbol{k}_s
ight> = oldsymbol{q}_u \cdot oldsymbol{k}_s / \sqrt{q}.$$

These are three different ways to express the scalar product between the query \mathbf{q}_{u} and the key \mathbf{k}_{s} ; see also next graph.

- The scaling factor \sqrt{q} removes the input dimension dependence. I.e., it prevents the dot-product operation from being too flat or too spiky.
- Each entry of the attention head H = AV is a weighted average of the columns of the value matrix V. The weights $a_{u,s}$ determine the *importance* of each row vector \mathbf{v}_s of V; see next illustration.

- If the query \boldsymbol{q}_u points into the same direction as the key \boldsymbol{k}_s , we receive a large attention weight $a_{u,s}$. This implies that the corresponding entry \boldsymbol{v}_s on the s-th row of the value matrix V receives a big attention.
- I.e., the information \mathbf{v}_s at time s is important for period u (the query \mathbf{q}_u at time u).

- 1. Attention layer
- 2 2. Query, Key and Value
- 3. Attention head
- 4. Multi-head Attention
- 5 5. Other Layers in Transformers

4. Multi-head Attention

Overview

- A Transformer layer can also have multiple attention heads, allowing the model to focus more effectively on different parts of the input sequence simultaneously.
- Rather than computing a single attention output, multi-head attention applies the attention mechanism multiple times in parallel, with each attention head using different weights and parameters.

- The multi-head attention mechanism applies $n_h \ge 2$ parallel attention heads to $X_{1:t}$.
- Assume the j-th attention head is given by the query, key and value Q_j , K_j , and V_j , respectively, defining the j-th attention head

$$H_j = H_j(oldsymbol{X}_{1:t}) = \operatorname{softmax}\left(rac{Q_jK_j^ op}{\sqrt{q}}
ight)V_j \in \mathbb{R}^{t imes q}.$$

These heads are concatenated and linearly transformed

$$H_{\mathsf{MH}}(\boldsymbol{X}_{1:t}) = \mathsf{Concat}\left(H_1, H_2, \dots, H_{n_h}\right) W \in \mathbb{R}^{t \times q},$$

for an output weight matrix $W \in \mathbb{R}^{n_h q \times q}$.

• This multi-head attention is further processed as described above.

- 1. Attention layer
- 2 2. Query, Key and Value
- 3. Attention head
- 4. Multi-head Attention
- 5 5. Other Layers in Transformers

5. Other Layers in Transformers

In addition to attention and feed-forward components, transformer architectures also commonly include:

- Layer Normalization
 - Helps stabilize and speed up training by reducing internal covariate shift.
- Drop-out Layer
 - Used as a regularization technique to prevent overfitting.

5.1 Layer normalization

Overview

- Layer normalization, introduced by Ba, Kiros and Hinton (2016), is a technique used to improve the learning process, to accelerate convergence, and to enhance the model's predictive performance.
- A layer normalization is applied to individual instances across all covariate (feature) components; this is not affected by the batch size.
- In contrast, batch normalization of loffe and Szegedy (2015) is applied for a fixed covariate (feature) component across all instances in the batch; additionally, batch normalization often involves a moving average mechanism for having stability across multiple batches.

Layer normalization is a mapping

$$\boldsymbol{z}^{\mathsf{norm}} : \mathbb{R}^q \to \mathbb{R}^q, \qquad \boldsymbol{X} \mapsto \boldsymbol{z}^{\mathsf{norm}}(\boldsymbol{X}) = \left(\gamma_j \left(\frac{X_j - \bar{X}}{\sqrt{s^2 + \epsilon}}\right) + \delta_j\right)_{1 \le j \le q},$$

where $\epsilon > 0$ is a small constant added for numerical stability.

ullet The empirical mean $ar{X} \in \mathbb{R}$ and variance $s^2 \in \mathbb{R}^+$ are computed as

$$\bar{X} = \frac{1}{q} \sum_{j=1}^{q} X_j$$
 and $s^2 = \frac{1}{q} \sum_{j=1}^{q} (X_j - \bar{X})^2$.

• $\gamma = (\gamma_1, \dots, \gamma_q)^{\top} \in \mathbb{R}^q$ and $\delta = (\delta_1, \dots, \delta_q)^{\top} \in \mathbb{R}^q$ are vectors of trainable parameters.

5.2 Drop-out layer

Overview

- Drop-out is a widely used regularization technique in networks.
- We have already briefly discussed it in the FNN chapter.
- It randomly removes neurons (units) during the model training to enhance the model's generalization capabilities.

Drop-out has been introduced by Srivastava *et al.* (2014) and Wager, Wang and Liang (2013).

- Drop-out is typically implemented by multiplying the output of a specific layer by i.i.d. realizations of Bernoulli random variables with a fixed drop-out rate $\alpha \in (0,1)$ in each step of SGD training.
- Drop-out is formalized by

$$\mathbf{z}^{\mathsf{drop}}: \mathbb{R}^q o \mathbb{R}^q, \qquad \mathbf{X} \mapsto \mathbf{z}^{\mathsf{drop}}(\mathbf{X}) = \mathbf{Z} \odot \mathbf{X},$$

where $\mathbf{Z} = (Z_1, Z_2, \dots, Z_q)^{\top} \in \{0, 1\}^q$ is a vector of i.i.d. Bernoulli random variables that are re-sampled in each SGD step, and \odot denotes the element-wise Hadamard product.

References I

Ba, J.L., Kiros, J.R. and Hinton, G.E. (2016) 'Layer normalization', arXiv:1607.06450 [Preprint]. Available at: https://arxiv.org/abs/1607.06450.

loffe, S. and Szegedy, C. (2015) 'Batch normalization: Accelerating deep network training by reducing internal covariate shift', in *International Conference on Machine Learning*. PMLR, pp. 448–456. Available at: https://proceedings.mlr.press/v37/ioffe15.html.

Srivastava, N. *et al.* (2014) 'Dropout: A simple way to prevent neural networks from overfitting', *The Journal of Machine Learning Research*, 15(1), pp. 1929–1958. Available at: https://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf.

References II

Vaswani, A. *et al.* (2017) 'Attention is all you need', *Advances In Neural Information Processing Systems*, 30. Available at: https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Wager, S., Wang, S. and Liang, P.S. (2013) 'Dropout training as adaptive regularization', *Advances in Neural Information Processing Systems*, 26. Available at: https://arxiv.org/abs/1307.1493.