Lecture 11: Attention Layer

Deep Learning for Actuarial Modeling
36th International Summer School SAA
University of Lausanne

Ronald Richman, Salvatore Scognamiglio, Mario V. Wiithrich

2025-09-11

1/20

1. Attention layer

© 1. Attention layer

2/20

1. Attention layer

Overview

o Attention layers are the key building blocks of Transformers.
They are designed to identify the most relevant information in
the input data.

@ The central idea is to learn a weighting scheme that prioritizes
the most important parts and their interactions of the input
information.

o Different attention mechanisms are available in the literature.
Our focus is on the most commonly used variant called scaled
dot-product attention.

Attention layers were introduced in the seminal paper of Vaswani et al.
(2017).

2/20

1. Attention layer

Attention layers were first designed for sequential data (e.g., time-series).

The starting point is an input sequence of elements:

X1t =[X1, ..., X] € R,

where:

@ t is length of the sequence,
@ ¢ is dimension of the series,
o X, € RY9 is the u-th element of the sequence, with 1 < u < t.

3/20

2. Query, Key and Value

© 2. Query, Key and Value

4/20

2. Query, Key and Value

In order to be applied, an attention layer requires the following elements:

@ Queriessqg, € R9, 1 <u<t
e The query g, represents what the u-th element is trying to find in the
overall input
o Act like a question asking: “What information is relevant to me?”
o Keys k, e R, 1 <u<t.
e The key k, describes what the u-th element can provide to others.
e Function like a /abel indicating: “This is the kind of information | carry”.
@ Valuesv, e R9, 1 <u<t
e The value v, contains the actual content that can be shared
o When a query matches a key, the corresponding value is passed along as
useful context.

4/20

2. Query, Key and Value

The query g, tries to find a key ks that gives a match. E.g., in a sentence
the query of the subject ‘car’ tries to find a verb ‘accelerate’ in the sentence,
which then gives a match for a dangerous driving maneuver. In that case, a
high attention is paid to the corresponding value vs.

Queries, keys and values are represented by the three matrices

Q = [Q1>---7Clt]T € Rtxqv
K = [ki,...,k]" e R™9,
V = [vi,...,ve] €R¥9,

In self-attention models, @, K, and V are derived from the input sequence
X1+ by applying some time -distributed layers.

5/20

2.1 Time-distributed layer

Overview

A time-distributed layer applies the same operation (with the same
parameters) to every component (time step) of sequential input data.

6/20

2. Query, Key and Value

@ Consider a time-distributed FNN layer with g; units applied to the
input tensor X1.; € Rt*9,

@ This performs the mapping
zt—FNN . Rtxq N RtXCh’

.
Xie > 27 (X0) = (2N(X), L 2N (X))

where zZFNN': R9 — R% is a FNN layer.
@ This transformation leaves the time dimension t unchanged.

@ Important, the same parameters (network weights and biases) are
shared across all time steps 1 < u < t. This makes the FNN layer a
so-called time-distributed one.

7/20

2. Query, Key and Value

To derive q,, k,, and v, three time-distributed g-dimensional FNNs
ZEFNN L RExa rExa . Xy e 25PN (X),
for k = Q, K, V, where applied.
These give us the time-slices for fixed time points 1 < u <'t
a, #3M() — o0 (0 + WOX,) <R
ky = ZMN(X,) = o (wh + WIHIX,) e RS,
vy = 2MN(X,) = oy (wh + WVIX,) e R,
with corresponding network weights, biases, and activation functions.
Equivalently, this reads in matrix notation as
Q= tFNN(Xl t) = [q17-"7qt]—r e R™9,
K =28NN(X1,) = [ke, ... k] € RT¥9,
V= 25NN(X) = [ve,. .., ve] T € REX9,

8/20

3. Attention head

© 3. Attention head

9/20

3 Auentionhexd |
3. Attention head

@ The attention head is defined by the mapping
H: R x R¥9 x R*™X9 5 RT¥9, (Q,K,V)— H=H(QK,V),

with scaled dot-product attention

-
K V € R4,
q

HzAstoftmax(Q

o The attention matrix A € R**! is obtained by applying the softmax
function row-wise to matrix A’ = QKT/ﬁ, that is,

exp(ay,s)

A = softmax(A’), where a,s= ——— 2"
S Yl exp(al)

€ (0,1).

020 @ This ensures that the rows sums of A are equal to one.

3. Attention head

@ Recalling the notation
Q=1[gy.....q]" €R™ and K =[kq,... ki €R™9,

the elements aj, ; of matrix A’ are given by the dot-product
, 1 - 1
Bus = /g ks = NG (9y,ks) = q, - ks/\/q.

These are three different ways to express the scalar product between
the query g, and the key ks; see also next graph.

@ The scaling factor ,/q removes the input dimension dependence. l.e., it
prevents the dot-product operation from being too flat or too spiky.

@ Each entry of the attention head H = AV is a weighted average of the
columns of the value matrix V. The weights a, s determine the
importance of each row vector vs of V; see next illustration.

10/20

3. Attention head

q, ... dy ... q

queries

k, ok, K,

keys

o If the query g, points into the same direction as the key ks, we receive
a large attention weight a, s. This implies that the corresponding entry
vs on the s-th row of the value matrix V receives a big attention.

e l.e., the information v, at time s is important for period u (the query
q, at time u).

11/20

4. Multi-head Attention

© 4. Multi-head Attention

12/20

4. Multi-head Attention

Overview

@ A Transformer layer can also have multiple attention heads,
allowing the model to focus more effectively on different parts of
the input sequence simultaneously.

@ Rather than computing a single attention output, multi-head
attention applies the attention mechanism multiple times in
parallel, with each attention head using different weights and
parameters.

12/20

4. Multi-head Attention

13/20

@ The multi-head attention mechanism applies np > 2 parallel attention
heads to Xi.;.

@ Assume the j-th attention head is given by the query, key and value Qy,
Kj, and Vj, respectively, defining the j-th attention head

H; = Hj(X1.t) = softmax UK V; € R4

pu— :t p— D .

j j NG J

@ These heads are concatenated and linearly transformed
HMH(Xlzt) = Concat (Hl, Hy, ..., th) W e Rtxq,

for an output weight matrix W € R™9*49,

@ This multi-head attention is further processed as described above.

5. Other Layers in Transformers

© 5. Other Layers in Transformers

14/20

5. Other Layers in Transformers

5. Other Layers in Transformers

In addition to attention and feed-forward components, transformer
architectures also commonly include:

@ Layer Normalization

o Helps stabilize and speed up training by reducing internal covariate shift.
@ Drop-out Layer

o Used as a regularization technique to prevent overfitting.

14/20

5.1 Layer normalization

Overview

e Layer normalization, introduced by Ba, Kiros and Hinton (2016),
is a technique used to improve the learning process, to accelerate
convergence, and to enhance the model’s predictive performance.

@ A layer normalization is applied to individual instances across all
covariate (feature) components; this is not affected by the batch
size.

@ In contrast, batch normalization of loffe and Szegedy (2015) is
applied for a fixed covariate (feature) component across all
instances in the batch; additionally, batch normalization often
involves a moving average mechanism for having stability across
multiple batches.

15/20

5. Other Layers in Transformers

@ Layer normalization is a mapping

X — X
2RI SR, X 2"M(X) = (W <J> T 5,-) ,
Vs?te 1<j<q

where € > 0 is a small constant added for numerical stability.

@ The empirical mean X € R and variance s? € R* are computed as

q
ZXJ and s2 = Z(Xj—)_()2.

o v=(7,--,7) €RIand § = (d1,...,84)" € RY are vectors of
trainable parameters.

16/20

5.2 Drop-out layer

Overview

@ Drop-out is a widely used regularization technique in networks.

@ We have already briefly discussed it in the FNN chapter.

@ It randomly removes neurons (units) during the model training to
enhance the model's generalization capabilities.

Drop-out has been introduced by Srivastava et al. (2014) and Wager, Wang
and Liang (2013).

17/20

5. Other Layers in Transformers

@ Drop-out is typically implemented by multiplying the output of a
specific layer by i.i.d. realizations of Bernoulli random variables with a
fixed drop-out rate o € (0,1) in each step of SGD training.

@ Drop-out is formalized by
z9°P . RI 5 RY, X z9°P(X) = Z o X,

where Z = (21,2, ...,2Z4)" € {0,1}9 is a vector of i.i.d. Bernoulli
random variables that are re-sampled in each SGD step, and ® denotes
the element-wise Hadamard product.

18/20

References

References |

Ba, J.L., Kiros, J.R. and Hinton, G.E. (2016) ‘Layer normalization’,
arXiv:1607.06450 [Preprint]. Available at:
https://arxiv.org/abs/1607.06450.

loffe, S. and Szegedy, C. (2015) ‘Batch normalization: Accelerating deep
network training by reducing internal covariate shift’, in International
Conference on Machine Learning. PMLR, pp. 448-456. Available at:
https://proceedings.mlr.press/v37 /ioffel5.html.

Srivastava, N. et al. (2014) ‘Dropout: A simple way to prevent neural
networks from overfitting’, The Journal of Machine Learning Research,
15(1), pp. 1929-1958. Available at:
https://www.jmlr.org/papers/volumel5/srivastaval4a/srivastavalda.pdf.

19/20

https://arxiv.org/abs/1607.06450
https://proceedings.mlr.press/v37/ioffe15.html
https://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

References

References |l

Vaswani, A. et al. (2017) ‘Attention is all you need’, Advances In Neural
Information Processing Systems, 30. Available at:

https://proceedings.neurips.cc/paper/2017 /hash /3f5ee243547dee91fbd05
3clc4a84baa-Abstract.html.

Wager, S., Wang, S. and Liang, P.S. (2013) ‘Dropout training as adaptive
regularization’, Advances in Neural Information Processing Systems, 26.
Available at: https://arxiv.org/abs/1307.1493.

20/20

https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://arxiv.org/abs/1307.1493

	1. Attention layer
	2. Query, Key and Value
	3. Attention head
	4. Multi-head Attention
	5. Other Layers in Transformers
	References

