
Lecture 11: Attention Layer
Deep Learning for Actuarial Modeling

36th International Summer School SAA
University of Lausanne

Ronald Richman, Salvatore Scognamiglio, Mario V. Wüthrich

2025-09-11

1/20



1. Attention layer

1 1. Attention layer

2 2. Query, Key and Value

3 3. Attention head

4 4. Multi-head Attention

5 5. Other Layers in Transformers

2/20



1. Attention layer

1. Attention layer

Overview

Attention layers are the key building blocks of Transformers.
They are designed to identify the most relevant information in
the input data.
The central idea is to learn a weighting scheme that prioritizes
the most important parts and their interactions of the input
information.
Different attention mechanisms are available in the literature.
Our focus is on the most commonly used variant called scaled
dot-product attention.

Attention layers were introduced in the seminal paper of Vaswani et al.
(2017).

2/20



1. Attention layer

Attention layers were first designed for sequential data (e.g., time-series).

The starting point is an input sequence of elements:

X1:t =
[
X1, . . . , X t

]⊤ ∈ Rt×q,

where:

t is length of the sequence,
q is dimension of the series,
Xu ∈ Rq is the u-th element of the sequence, with 1 ≤ u ≤ t.

3/20



2. Query, Key and Value

1 1. Attention layer

2 2. Query, Key and Value

3 3. Attention head

4 4. Multi-head Attention

5 5. Other Layers in Transformers

4/20



2. Query, Key and Value

2. Query, Key and Value

In order to be applied, an attention layer requires the following elements:

Queries qu ∈ Rq, 1 ≤ u ≤ t
The query qu represents what the u-th element is trying to find in the
overall input
Act like a question asking: “What information is relevant to me?”

Keys ku ∈ Rq, 1 ≤ u ≤ t.
The key ku describes what the u-th element can provide to others.
Function like a label indicating: “This is the kind of information I carry”.

Values vu ∈ Rq, 1 ≤ u ≤ t
The value vu contains the actual content that can be shared
When a query matches a key, the corresponding value is passed along as
useful context.

4/20



2. Query, Key and Value

The query qu tries to find a key ks that gives a match. E.g., in a sentence
the query of the subject ‘car’ tries to find a verb ‘accelerate’ in the sentence,
which then gives a match for a dangerous driving maneuver. In that case, a
high attention is paid to the corresponding value v s .

Queries, keys and values are represented by the three matrices

Q = [q1, . . . , qt ]
⊤ ∈ Rt×q,

K = [k1, . . . , kt ]⊤ ∈ Rt×q,

V = [v1, . . . , v t ]⊤ ∈ Rt×q.

In self-attention models, Q, K , and V are derived from the input sequence
X1:t by applying some time -distributed layers.

5/20



2. Query, Key and Value

2.1 Time-distributed layer

Overview

A time-distributed layer applies the same operation (with the same
parameters) to every component (time step) of sequential input data.

6/20



2. Query, Key and Value

Consider a time-distributed FNN layer with q1 units applied to the
input tensor X1:t ∈ Rt×q.

This performs the mapping

zt-FNN : Rt×q → Rt×q1 ,

X1:t 7→ zt-FNN(X1:t) =
(
zFNN(X1), . . . , zFNN(X t)

)⊤
,

where zFNN : Rq → Rq1 is a FNN layer.

This transformation leaves the time dimension t unchanged.

Important, the same parameters (network weights and biases) are
shared across all time steps 1 ≤ u ≤ t. This makes the FNN layer a
so-called time-distributed one.

7/20



2. Query, Key and Value

To derive qu, ku, and vu, three time-distributed q-dimensional FNNs

zt-FNN
κ : Rt×q → Rt×q, X1:t 7→ zt-FNN

κ (X1:t),

for κ = Q, K , V , where applied.

These give us the time-slices for fixed time points 1 ≤ u ≤ t

qu = zFNN
Q (Xu) = ϕQ

(
w (Q)

0 + W (Q)Xu
)

∈ Rq,

ku = zFNN
K (Xu) = ϕK

(
w (K)

0 + W (K)Xu
)

∈ Rq,

vu = zFNN
V (Xu) = ϕV

(
w (V )

0 + W (V )Xu
)

∈ Rq,

with corresponding network weights, biases, and activation functions.

Equivalently, this reads in matrix notation as

Q = zt-FNN
Q (X1:t) = [q1, . . . , qt ]

⊤ ∈ Rt×q,

K = zt-FNN
K (X1:t) = [k1, . . . , kt ]⊤ ∈ Rt×q,

V = zt-FNN
V (X1:t) = [v1, . . . , v t ]⊤ ∈ Rt×q.

8/20



3. Attention head

1 1. Attention layer

2 2. Query, Key and Value

3 3. Attention head

4 4. Multi-head Attention

5 5. Other Layers in Transformers

9/20



3. Attention head

3. Attention head

The attention head is defined by the mapping

H : Rt×q ×Rt×q ×Rt×q → Rt×q, (Q, K , V ) 7→ H = H(Q, K , V ),

with scaled dot-product attention

H = A V = softmax
(

QK⊤
√q

)
V ∈ Rt×q.

The attention matrix A ∈ Rt×t is obtained by applying the softmax
function row-wise to matrix A′ = QK⊤/

√q, that is,

A = softmax(A′), where au,s =
exp(a′

u,s)∑t
k=1 exp(a′

u,k)
∈ (0, 1).

This ensures that the rows sums of A are equal to one.9/20



3. Attention head

Recalling the notation

Q = [q1, . . . , qt ]
⊤ ∈ Rt×q and K = [k1, . . . , kt ]⊤ ∈ Rt×q,

the elements a′
u,s of matrix A′ are given by the dot-product

a′
u,s = 1

√q q⊤
u ks = 1

√q ⟨qu, ks⟩ = qu · ks/
√q.

These are three different ways to express the scalar product between
the query qu and the key ks ; see also next graph.

The scaling factor √q removes the input dimension dependence. I.e., it
prevents the dot-product operation from being too flat or too spiky.

Each entry of the attention head H = A V is a weighted average of the
columns of the value matrix V . The weights au,s determine the
importance of each row vector v s of V ; see next illustration.

10/20



3. Attention head

If the query qu points into the same direction as the key ks , we receive
a large attention weight au,s . This implies that the corresponding entry
v s on the s-th row of the value matrix V receives a big attention.

I.e., the information v s at time s is important for period u (the query
qu at time u).

11/20



4. Multi-head Attention

1 1. Attention layer

2 2. Query, Key and Value

3 3. Attention head

4 4. Multi-head Attention

5 5. Other Layers in Transformers

12/20



4. Multi-head Attention

4. Multi-head Attention

Overview

A Transformer layer can also have multiple attention heads,
allowing the model to focus more effectively on different parts of
the input sequence simultaneously.
Rather than computing a single attention output, multi-head
attention applies the attention mechanism multiple times in
parallel, with each attention head using different weights and
parameters.

12/20



4. Multi-head Attention

The multi-head attention mechanism applies nh ≥ 2 parallel attention
heads to X1:t .

Assume the j-th attention head is given by the query, key and value Qj ,
Kj , and Vj , respectively, defining the j-th attention head

Hj = Hj(X1:t) = softmax
(

QjK⊤
j√q

)
Vj ∈ Rt×q.

These heads are concatenated and linearly transformed

HMH(X1:t) = Concat (H1, H2, . . . , Hnh) W ∈ Rt×q,

for an output weight matrix W ∈ Rnhq×q.

This multi-head attention is further processed as described above.

13/20



5. Other Layers in Transformers

1 1. Attention layer

2 2. Query, Key and Value

3 3. Attention head

4 4. Multi-head Attention

5 5. Other Layers in Transformers

14/20



5. Other Layers in Transformers

5. Other Layers in Transformers

In addition to attention and feed-forward components, transformer
architectures also commonly include:

Layer Normalization
Helps stabilize and speed up training by reducing internal covariate shift.

Drop-out Layer
Used as a regularization technique to prevent overfitting.

14/20



5. Other Layers in Transformers

5.1 Layer normalization

Overview

Layer normalization, introduced by Ba, Kiros and Hinton (2016),
is a technique used to improve the learning process, to accelerate
convergence, and to enhance the model’s predictive performance.
A layer normalization is applied to individual instances across all
covariate (feature) components; this is not affected by the batch
size.
In contrast, batch normalization of Ioffe and Szegedy (2015) is
applied for a fixed covariate (feature) component across all
instances in the batch; additionally, batch normalization often
involves a moving average mechanism for having stability across
multiple batches.

15/20



5. Other Layers in Transformers

Layer normalization is a mapping

znorm : Rq → Rq, X 7→ znorm(X) =
(

γj

(
Xj − X̄√

s2 + ϵ

)
+ δj

)
1≤j≤q

,

where ϵ > 0 is a small constant added for numerical stability.

The empirical mean X̄ ∈ R and variance s2 ∈ R+ are computed as

X̄ = 1
q

q∑
j=1

Xj and s2 = 1
q

q∑
j=1

(Xj − X̄ )2.

γ = (γ1, . . . , γq)⊤ ∈ Rq and δ = (δ1, . . . , δq)⊤ ∈ Rq are vectors of
trainable parameters.

16/20



5. Other Layers in Transformers

5.2 Drop-out layer

Overview

Drop-out is a widely used regularization technique in networks.
We have already briefly discussed it in the FNN chapter.
It randomly removes neurons (units) during the model training to
enhance the model’s generalization capabilities.

Drop-out has been introduced by Srivastava et al. (2014) and Wager, Wang
and Liang (2013).

17/20



5. Other Layers in Transformers

Drop-out is typically implemented by multiplying the output of a
specific layer by i.i.d. realizations of Bernoulli random variables with a
fixed drop-out rate α ∈ (0, 1) in each step of SGD training.

Drop-out is formalized by

zdrop : Rq → Rq, X 7→ zdrop(X) = Z ⊙ X ,

where Z = (Z1, Z2, . . . , Zq)⊤ ∈ {0, 1}q is a vector of i.i.d. Bernoulli
random variables that are re-sampled in each SGD step, and ⊙ denotes
the element-wise Hadamard product.

18/20



References

References I

Ba, J.L., Kiros, J.R. and Hinton, G.E. (2016) ‘Layer normalization’,
arXiv:1607.06450 [Preprint]. Available at:
https://arxiv.org/abs/1607.06450.

Ioffe, S. and Szegedy, C. (2015) ‘Batch normalization: Accelerating deep
network training by reducing internal covariate shift’, in International
Conference on Machine Learning. PMLR, pp. 448–456. Available at:
https://proceedings.mlr.press/v37/ioffe15.html.

Srivastava, N. et al. (2014) ‘Dropout: A simple way to prevent neural
networks from overfitting’, The Journal of Machine Learning Research,
15(1), pp. 1929–1958. Available at:
https://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf.

19/20

https://arxiv.org/abs/1607.06450
https://proceedings.mlr.press/v37/ioffe15.html
https://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf


References

References II

Vaswani, A. et al. (2017) ‘Attention is all you need’, Advances In Neural
Information Processing Systems, 30. Available at:
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd05
3c1c4a845aa-Abstract.html.

Wager, S., Wang, S. and Liang, P.S. (2013) ‘Dropout training as adaptive
regularization’, Advances in Neural Information Processing Systems, 26.
Available at: https://arxiv.org/abs/1307.1493.

20/20

https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://arxiv.org/abs/1307.1493

	1. Attention layer
	2. Query, Key and Value
	3. Attention head
	4. Multi-head Attention
	5. Other Layers in Transformers
	References

